

# Oxygen Deficiency Monitor

- No maintenance Zirconium cell
- No calibration required
- No drift due to environmental or temperature changes
- Operates at -40C in freezers
- 10 + years sensor life
- Local display, 4-20mA output
- Joystick adjustable dual alarm relays
- Integral computer controlled electronics



### Presentation Overview

- Features & Advantages of PureAire oxygen monitor with zirconium oxide sensor cell.
- Comparison of oxygen monitors with disposable sensor cell technology.
- Typical Oxygen monitoring applications.
- PureAire O<sub>2</sub> monitor operation
- Why to use a PureAire O<sub>2</sub> monitoring

# PureAire's Zirconium Oxide Sensor

PureAire Current Limiting

Zirconium Oxide O<sub>2</sub> cell

#### Non-depleting sensor cell

Cell Life is 10 + years

#### **Maintenance Free**

No cell replacement required

#### **No Calibration**

Non-depleting and does not rely on partial pressure. The earth is a wonderful source of calibrated oxygen.

#### Operates at high and low temperatures, not effected by humidity

Can operate down to -40 C & 100 % RH condensing

#### No reference gas required

Can operate in a 100% N<sub>2</sub> Environment

| Test #    |       | Initial setup          | TEST #1     | TEST #2        | TEST #3      | TEST #4      |
|-----------|-------|------------------------|-------------|----------------|--------------|--------------|
| Date      |       | 1/23/2008              | 2/6/2008    | 2/20/2008      | 3/5/2008     | 3/19/2008    |
| Time      |       | 11:45                  | 14:50       | 13:30          | 11:50        | 11:30        |
| Amount    | Total | Initial                | Exposed     | First Detailed | 2nd Detailed | 3rd Detailed |
| of Room   | Air   | Set-up                 | sensor      | Test           | Test         | Test         |
| Air Added | Added | Basically              | to room air |                |              |              |
| СС        | СС    | a N <sub>2</sub> purge |             |                |              |              |
| 0         | 0     | 0                      | 0           | 0              | 0            | 0            |
| 10        | 10    | -                      | -           | 0.4            | 0.2          | 0.2          |
| 10        | 20    | -                      | -           | 0.7            | 0.6          | 0.5          |
| 10        | 30    | -                      | -           | 1.1            | 1            | 1            |
| 10        | 40    | -                      | -           | 1.4            | 1.2          | 1.3          |
| 10        | 50    | -                      | -           | 1.8            | 1.5          | 1.6          |
| 50        | 100   | -                      | -           | 3.2            | 3.1          | 3.1          |
| 50        | 150   | -                      | -           | 4.5            | 4.5          | 4.4          |
| 50        | 200   | -                      | -           | 5.8            | 5.6          | 5.6          |
| 50        | 250   | -                      | -           | 6.6            | 6.5          | 6.6          |
| 50        | 300   | -                      | -           | 7.7            | 7.7          | 7.7          |
| 50        | 350   | -                      | -           | 8.5            | 8.6          | 8.5          |
| 50        | 400   | -                      | -           | 9.5            | 9.5          | 9.4          |
| 50        | 450   | -                      | -           | 10.1           | 10.3         | 10.1         |
| 765       | 765   | 21.3                   | 21.2        | -              | -            | -            |

## Disposable Oxygen Sensor Cell

Partial Pressure Electrochemical Disposable Cell Sensor

#### **Continuously Depleting sensor**

Lead anode is used up in detecting  $O_2$ . Ambient Oxygen depletes the sensor cell, hence more  $O_2$  the sensor is exposed to, the faster the anode depletes

#### Drifts to changes in barometric pressure

Operates on partial pressure of  $O_2$  to drive molecules through the barrier into the sensor.  $O_2$  reading drops to lower pressure

#### One to two year cell life

Life expectancy is dependant on the concentration of gas the sensor cell is exposed to along with environmental conditions such as humidity, temperature, and pressure.

#### **Requires frequent dynamic calibration**

The lead anode is continuously being used when exposed to 20.9%. As is depletes it drifts below 20.9%, which can cause a false alarm.

#### **Cannot operate at low temperatures**

Cell electrolyte freezes and output drops to zero (Cannot operate in a freezer)





# Oxygen Deficiency Monitor

- No maintenance Zirconium cell
- No calibration required
- No drift due to environmental or temperature changes
- Operates at -40C in freezers
- 10 + years sensor life
- Local display, 4-20mA output
- Joystick adjustable dual alarm relays
- Integral computer controlled electronics



# Explosion Proof Monitor With Sample Pump



- Suitable for Class 1 Div 1 Group B
- No maintenance Zirconium cell
- No calibration required
- No drift to environmental or temperature changes
- 10 + years Sensor life
- Local display, 4-20 mA analog output, and User selectable Dual alarm relays
- Built-in sample pump with flow control

### Air Check O<sub>2</sub> Sample Draw

- For remote sampling 100 feet
- No maintenance Zirconium cell
- No calibration required
- No drift to environmental or temperature changes
- 10 + year Sensor life
- Local display
- 4-20 mA analog output
- Built-in flow sample pump
- Built-in adjustable alarm relays



## Only Company To Operate In A Vacuum Environment





- Monitors in vacuum 10<sup>-3</sup> torr
- No maintenance Zirconium cell calibration required
- No drift to environmental or temperature changes
- ✓ 10 + year Sensor life
- Local digital display, 4-20mA output
- Joystick adjustable dual alarm relays
- Integral computer controlled electronics

#### Air Check Oxygen monitor with remote Horn & Strobe



#### O2 monitors connected to Multi channel controller

Remote Horn/Strobe







|                                                                                                                                                       | Pow<br>C<br>MA | er Analog ou<br>Common sigr<br>4-20mA sign<br>(connects to<br>24VDC Powe | al ground (<br>al output (P<br>PLC or Rer<br>r (Pin 1) | inal Block<br>(Pin 3) mA output<br>Pin 2)<br>note display) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                       | Remote         | Fault Relay                                                              | Alarm 1                                                | Alarm 2                                                    |
|                                                                                                                                                       | Reset          | C NC NO                                                                  | C NC NO                                                | C NC NO                                                    |
| A three-wire shielded cable, 3-<br>conductor, 18 AWG stranded.<br>General Cable E2203S.30.860,<br>or equivalent is recommended<br>for the connection. |                |                                                                          |                                                        |                                                            |

#### Front View Exterior with Relay Option



- **1. Digital Display** —3-digit backlit LCD digital display for showing the oxygen levels in percent.
- 2. Joystick Used for selecting and adjusting the built-in menus.
- **3. Cable Port** —4-20 mA output and 24 VDC power cable.
- 4/5. Sensor Protector—The O2 sensor is heated and the sensor protector shields
- 4/5. Oxygen Sensor A zirconium oxide sensor,

Joystick Functions



- Minus



### Menu Functions & Settings

| Menu Function                   | Factory Default                                                              | Menu Defined                                                                                                                 |  |
|---------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Alarm Thresholds                | Alarm 1 = 19.5%<br>Alarm 2 = 18%<br>Audio = 19.5% *                          | At what level do you want to alarm?                                                                                          |  |
| Set Alarm Threshold<br>Polarity | Alarm 1 = Inverted<br>Alarm 2 = Inverted<br>Audio = Inverted *               | Do you want to alarm at a level higher,<br>(normal) or lower, (inverted) than<br>the alarm threshold?                        |  |
| Alarm Delay                     | Alarm $= 5$ seconds                                                          | How long do you want to wait until the alarms activate?                                                                      |  |
| Set Alarm Hysterisis            | Alarm 1 = 0.0 %<br>Alarm 2 = 0.0 %<br>Audio = 0.0 %                          | For use when using the O <sub>2</sub> monitor for<br>control.<br>See Section 5.4.8                                           |  |
| Relay Latching                  | Alarm 1 = Non-latching<br>Alarm 2 = Non-<br>latching<br>Audio = Non-latching | Do you want the alarm to automatically<br>reset? (non-latching) or do you<br>want to manually reset the alarm?<br>(latching) |  |
| Format Relay - LED<br>State **  | Alarm 1 = Normal<br>Alarm 2 = Normal<br>Fault = Normal                       | Do you want the relays to energize,<br>(normal) or de-energize, (fail<br>safe) when the alarm activates?                     |  |

### Summary of PureAire Monitor

- No need to replace sensor cells, can save up to \$300 annually, per monitor
- Non depleting sensor, no replacement
- No calibration
- No drifting to environmental conditions, or rapidly changing barometric pressure
- No false alarms
- Suitable for many different monitoring applications

Comparison of annual maintenance for a 1-point O<sub>2</sub> monitoring system

PureAire's O<sub>2</sub> Zirconium sensor does not require have consumables

Disposable O<sub>2</sub> cells (Annual replacement recommended)

- No calibration required
- Average Life is 10 + year

Quarterly calibration

Replacement cells @ average \$300 per cell\*

# Total\$ 0.00 per yearTotal\$ 300 per yrFive year cost\$0.00Six year cost\$1,800

\* Replacement O<sub>2</sub> cells range from \$200 to \$495 per cell

#### PureAire Monitoring Systems, Inc. Oxygen Monitor Users List

Tufts University Boston, MA

**NASA** Moffitt Field, California

Cornell Medical College New York, NY

Rolls Royce North Canton, OH

**Grainger** Oak Lawn, IL

University of Notre Dame Notre Dame, IN

Abbott Phamaceuticals Barceloneta, PR Harvard University Cambridge, MA

Lockheed Martin Littleton, CO

**UCSB** Santa Barbara, CA

**Jayhawk Fine Chemicals** Galena, KS

Stanford University Stanford, CA

ASM America Phoenix, AZ

Aviza Technology, Inc. Scotts Valley, California New York Presbyterian Hospital New York, NY

**Tev Tech, LLC** Wilmington, MA

**University at Buffalo** Buffalo, NY

Washington State University Pullman, WA

Goodyear Gadsen, AL

**US FDA** Winchester, MA