

Efficacy of the Erlab Halo P Device against Aerosolized MS2 Virus

Sean McLeod a, Jeffery Trolinger a

^a Aerosol Research and Engineering Laboratories Inc. Olathe KS

Background: This in vitro study characterized the efficacy of the Erlab device, Halo P, at removing aerosolized MS2 bacteriophage. The Halo P device is designed to reduce airborne bacteria, viruses, and fungal spores from the air. For this study the Halo P device was challenged using aerosolized MS2 bacteriophage, which has been historically used as a surrogate for influenza and now a tentative surrogate for *SARS CoV-2*. The worldwide pandemic has infected millions and methods of deterring airborne pathogens has become at the forefront of public health. As such, this study evaluated the efficacy of the device against aerosolized MS2 bacteriophage, as well as various sizes of polystyrene latex microspheres (PSL) in a stainless steel bioaerosol chamber. The study consisted of a total of three (3) live bioaerosol trials, a single (1) bioaerosol control run plus a PSL (1) challenge trial as well as a PSL (1) control trial.

Methods: MS2 bacteriophage was aerosolized into a sealed environmental bioaerosol chamber containing the Halo P device. AGI Impinger samples were taken at 0, 15, 30, 45, 60, and 90 minute time points from the chamber in order to quantify the reduction speed and capabilities of the Halo P. AGI impingers were used to sample chamber bioaerosol concentrations. All impinger samples were serially diluted, plated and enumerated in triplicate to yield viable bioaerosol concentration at each sampling point and time. Testing was conducted with the device on the high setting in triplicate. Chamber control trial data was subtracted from the Halo P trial data to yield net LOG reduction in the chamber for the bioaerosol challenges.

Results: When tested against the MS2 bacteriophage, the device showed a steady net log reduction in a relatively short amount of time with average log reduction values ranging from 0.82 average net Log in 15 minutes to 4.13 average net log reduction in 90 minutes. A net log reduction over 4.0 in 90 minutes indicates the speed and efficiency of this device against MS2 bacteriophage.

This study was conducted in compliance with FDA Good Laboratory Practices (GLP) as defined in 21 CFR, Part 58.

Introduction

This study was conducted to evaluate the efficacy of the Halo P air purification device at reducing aerosolized MS2 bacteriophage. The Halo P device is an air purification system intended for use in medium to large sized offices, schools and laboratories. The unit has several smart settings to allow for ease of use and monitoring of air quality. Once connected to a network via ethernet, the device can be controlled using the online application. In addition, Halo P device contains a pre-filter and a HEPA filter for removal of bioaerosols.

The test plan incorporated challenging the Halo P device in a closed environmental chamber to determine the reduction rate of MS2 bacteriophage by the Halo P device. Demonstrating the reduction in potentially hazardous organisms is key in determining efficacy of the device. A diagram entailing the technical specifications of the Halo P device is shown below in **Figure 1**.

Study Overview

The effectiveness of the Halo P device was evaluated against MS2 bacteriophage, a single-stranded, nonenveloped RNA virus. For more organism information please see species selection section in the body of this report. Particulate testing was also performed with polydispersed latex microspheres ranging from 0.5 to 5um.

Testing was conducted to characterize a single Halo P unit challenged with MS2 with triplicate (3) independent trials as well as a single (1) control trial to demonstrate the capability of the Halo P device to reduce viable bioaerosol concentrations therefore theoretically reducing chances of airborne infection. This study does not make any claims regarding the efficacy of this device at reducing airborne infections.

Figure 1: Halo P device

Bioaerosol Testing Chamber

A large sealed aerosol test chamber was used to replicate a potentially contaminated room environment and to contain any potential release of aerosols into the surrounding environment.

The aerosol test chamber is constructed of 304 stainless steel and is equipped with three viewing windows and an air-tight lockable chamber door for system setup and general ingress and egress. The test chamber internal dimensions are 9.1ft x 9.1ft x 7ft, with a displacement volume of 579 cubic feet, or 16,000 liters. **Figure 2** shows the bioaerosol chamber used for all testing in this study.

The chamber is equipped with filtered HEPA inlets, digital internal temperature and humidity monitor, external humidifiers (for humidity control), lighting system, multiple sampling ports, aerosol mixing fans, and a HEPA filtered exhaust system that are operated with wireless remote control. For testing, the chamber was equipped with four 3/8-inch diameter stainless steel probes for aerosol sampling, a 1-inch diameter port for bio-aerosol dissemination into the chamber using a Collison 24-jet nebulizer for the aerosolization of the bacteriophage.

A ¼ inch diameter probe was used for continuous aerosol particle size monitoring via a TSI Aerodynamic Particle Sizer (APS) model 3321. All sample and dissemination ports were inserted approximately 18 inches from the interior walls of the chamber to avoid wall effects and at a height of approximately 40 inches from the floor.

Figure 2: Bioaerosol Test Chamber Exterior.

The aerosol sampling and aerosol dissemination probes are stainless steel and bulk headed through the chamber walls to provide external remote access to the aerosol generator and samplers during testing.

The test chamber is equipped with two high-flow HEPA filters for the introduction of filtered purified air

into the test chamber during aerosol evacuation/purging of the system between test trials and a HEPA filtered exhaust blower with a 500 ft³/min rated flow capability for rapid evacuation of remaining bioaerosols.

A Magnehelic gauge with a range of 0.0 +/-0.5 inch H_2O (Dwyer instruments, Michigan City IN) was used to

monitor and balance the system pressure during aerosol generation, aerosol purge and testing cycles.

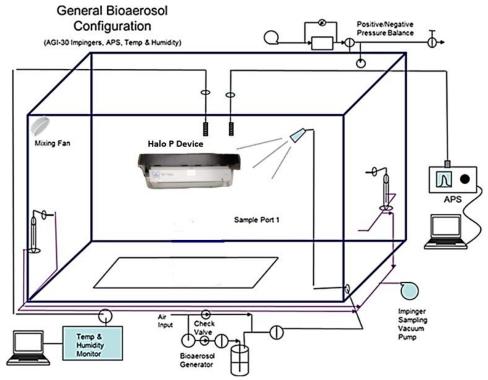


Figure 3: Bio-Aerosol Test Chamber Flow Diagram.

Bioaerosol Generation System

Test bioaerosols were disseminated using a Collison 24-jet nebulizer (BGI Inc,. Waltham MA) driven by purified filtered house air supply. A pressure regulator allowed for control of disseminated particle size, use rate and sheer force generated within the Collison nebulizer.

Prior to testing, the Collison nebulizer flow rate and use rate were characterized using an air supply pressure of approximately 60 psi, which obtained an output volumetric flow rate of 50-80 lpm with a fluid dissemination rate of approximately 1.25 ml/min. The Collison nebulizer was flow characterized using a calibrated TSI model 4040 mass flow meter (TSI Inc., St Paul MN).

Bioaerosol Sampling and Monitoring System

Two AGI impingers (Ace Glass Inc., Vineland NJ) were used for bio-aerosol collection of all biological aerosols to determine chamber concentration. The AGI-30 impinger vacuum source was maintained at a negative pressure of 18 inches of Hg during all characterization and test sampling to assure critical flow conditions. The AGI-30 sample impingers were flow characterized using a calibrated TSI model 4040 mass flow meter.

Aerosol particle size distributions and count concentrations were measured in real-time through the duration of all control and Halo P trial runs using a model 3321 Aerodynamic Particle Sizer (APS) (TSI Inc., St Paul, MN). The APS sampled for the entire duration of all trials (90 minutes) with 2-10 minute sampling intervals. A general flow diagram of the aerosol test system is shown above in **Figure 3** above.

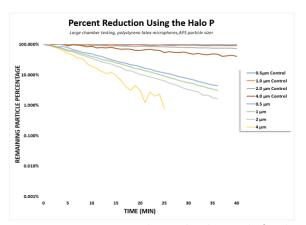
Species Selection

Species selection is based on Biological Safety Level 1 (BSL1) surrogates for BSL2/BSL3 pathogenic organisms. MS2 is a viral RNA bacteriophage that is commonly used as a surrogate for the influenza virus and a tentative surrogate for *SARS-CoV-2*. As mentioned the ability of a device at reducing a surrogate of a pandemic causing organism is crucial in the day to day setting for everyone. Minimizing risk of infection will be the key point in all filtration devices moving forward.

Viral Culture & Preparation

Pure strain viral seed stock and host bacterium were obtained from ATCC. Host bacterium was grown in a similar fashion to the vegetative cells in an appropriate liquid media. The liquid media was infected during the logarithmic growth cycle with the bacteriophage. After an appropriate incubation time the cells were lysed and the cellular debris separated by centrifugation. MS2 stock yields were greater than 1 x 10¹¹ plaque forming units per milliliter (pfu/ml) with a single amplification procedure. This stock MS2 viral solution was then diluted with PBS to approximately 1 x 10¹⁰ plague forming units per milliliter (pfu/ml) for use in the Collision nebulizer.

Plating and Enumeration


Impinger and stock biological cultures were serially diluted and plated in triplicate (multiple serial dilutions) using a small drop plaque assay technique onto tryptic soy agar plates. The plated cultures were incubated for 24-48 hours and enumerated and recorded.

Inert Particle Characterization

In order to calculate the dissemination efficiency and stability of the bioaerosol, polystyrene latex microspheres (PSL microspheres) were used to characterize the various aspects of the chamber system. Polydispersed PSL microspheres (Phosphorex Inc., Hopkinton, MA) with aerodynamic diameters of 0.5 - 5.0µm were nebulized, in DI water, and chamber concentrations were recorded using the APS. The APS recorded individual particle count from 0.5 to 20.0 µm in size with 52 separate size bins of resolution. In additional to these trial separate monodispersed PSL

microspheres of the following sizes were also used for characterization: 500 nm, 1.0 μ m, 2.0 μ m and 4.0 μ m.

Figure 4, below, shows the results for the control and Halo P for 0.5, 1.0, 2.0 μ m and 4.0 μ m PSL microsphere testing in the chamber. This data has been normalized to show percent reduction as a function of time in the chamber. Control trials were performed with chamber mixing fans "on" during the entirety of the trial. Additionally, the Halo P trials also had the mixing fans "on" during the entire trial also for consistency of test methods. When the data is plotted, there is a drop in particle number concentration with the Halo P in operation (please note the LOG scale of the y-axis). This figure also shows that after 22 minutes of operation by the Halo P device limits-of-detection for the APS are reached (0.001 particle per cc or 1 particle per liter)

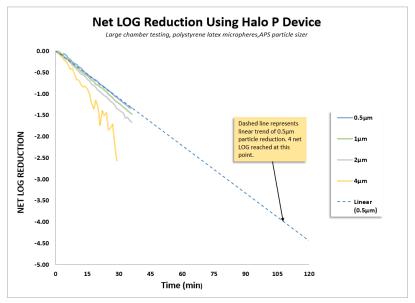


Figure 4: PSL Microspheres Chamber Trials for the Control and Halo P Device. Chart shows percent reduction versus time. Note that the y-axis is a LOG scale

Figure 5, on the following page, shows the NET LOG reduction for 0.5, 1.0, 2.0 μm and 4.0 μm PSL microspheres. The net log reduction of all tested sizes of PSL microspheres follows a precise logarithmic function for both cases. The figure shows the comparison between the reduction with and without the device in operation. It is notable that this size (0.5 um) is smaller than all vegetative bacteria, bacterial endospores, mold spores and pollens; it is also smaller than most soot particles.

The PSL microsphere trial data were used to estimate nebulization efficiencies, particle stability and AGI-30 collection times and aerosol persistence prior to bioaerosol testing.

Figure 5: Net LOG Reduction of PSL Microspheres by Halo P Device. Control minus Halo P Trial data for 0.5, 1.0, 2.0 μm and 4.0 particle sizes in bioaerosol test chamber.

Bioaerosol Control Testing

To accurately assess the Halo P unit, test chamber pilot control trials were performed with both bioaerosols over a 90-minute period without the device in operation to characterize the biological challenge aerosol for particle size distribution, aerosol delivery/collection efficiency, and viable concentration over time. Control testing was performed to provide baseline comparative data in order to assess the actual reduction from the Halo P challenge testing and verify that viable bioaerosol concentrations persisted above the required concentrations over the entire pilot control test period.

During control runs, a single low velocity fan located in the corner of the bioaerosol test chamber was turned on for the duration of trial to ensure a homogenous aerosol concentration within the aerosol chamber. The mixing fan was used for all control runs and was turned off during Halo P decontamination trials. The two impingers used for bacteriophage collection were pooled and mixed prior to plating and enumeration. A complete test matrix for all bioaerosol trials can be found below in **Figure 4**.

Halo P Testing

For each control and challenge test, the Collison nebulizer was filled with approximately 40 mL of biological stock and operated at 50 psi for a period of 20 minutes. For control and Halo P trials, the impingers were filled with 20 mL of sterilized PBS (addition of 0.005% v/v Tween 80) for bioaerosol collection. The addition of Tween 80 was shown to increase the impinger collection efficiency and de-agglomeration of all microorganisms.

The chamber mixing fan was turned on during bioaerosol dissemination to assure a homogeneous bioaerosol concentration in the test chamber prior to taking the first impinger sample. Following bioaerosol generation, baseline bioaerosol concentrations were established for each pilot control and Halo P test by sampling simultaneously with two AGI-30 impingers located at opposite corners of the chamber. AGI samples were collected for 2 to 10 minutes at intervals of 15 or 30 minutes throughout the entire test period. Figure 5 the general timeline for each Halo P live bioaerosol challenge trial can be seen below.

Trial	Run	Device	Organism	Monodispersed Particle Size	Trial Time (min)	Sampling Period (min)	Sampling
C1	Control						
T1	Challenge	Halo P	MS2 Bacteriophage -	1.8 to 2.0um	90	0,15,30,45,60,90	AGI Impingers, APS
T2	Challenge	114101	RNA bacteriophage	1.6 to 2.0μm	30	0,13,30,43,00,30	Act impligers, At 5
T3	Challenge						

Figure 4: Bioaerosol Test Matrices for all trials

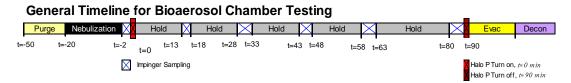


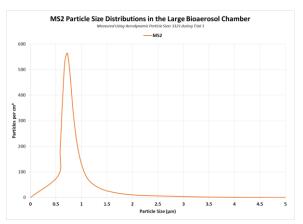
Figure 5: General Trial Timeline for Halo P Decontamination Trials

Collected impinger chamber samples were pooled and mixed at each sample interval for each test. Aliquots of impinger samples were collected and then used for plating. Impingers were rinsed 6x with sterile filtered water between each sampling interval, and refilled with sterile PBS using sterile graduated pipettes for sample collection.

For Halo P biological testing, the unit was turned on to the highest setting, which correspond to a flow rate of ~174ft³/min, immediately following a time 0 baseline sample and operated for the entirety of the test (90 min). Subsequent impinger samples were taken at 15, 30, 45, 60, and 90 minutes and samples enumerated for viable concentration to measure the effective viable bioaerosol reduction during operation of the Halo P device over time. All samples were plated in triplicate on tryptic soy agar media over a minimum of a 3 log dilution range.

Plates were incubated for 24 hours and enumerated for viable plaque forming units (pfu) to calculate aerosol challenge concentrations in the chamber and reduction of viable microorganisms.

Post-Testing Decontamination and Prep


Following each test, the chamber was air flow evacuated/purged for a minimum of twenty minutes between tests and analyzed with the APS for particle concentration decrease to baseline levels between each test. The chamber was decontaminated at the conclusion of the trials with aerosol/vaporous hydrogen peroxide (35%). The Collison nebulizer and impingers were cleaned at the conclusion of each day of testing by soaking in a 5% bleach bath for 20 minutes. The nebulizer and impingers were then submerged in a DI water bath, removed, and spray rinsed 6x with filtered DI water until use.

Bioaerosol Particle Size Data

Aerosol particle size distributions were measured with the APS. The APS has a dynamic measurement range of 0.5 to 20 μ m and was programmed to take

consecutive real time one-minute aerosol samples throughout the duration of each aerosol trial.

Data was logged in real time to an Acer laptop computer, regressed, and plotted. The aerosol particle size distribution for MS2 is shown in **Figure 6**.

Figure 6: Viral (MS2) Particle Size Distribution in Test Chamber.

The particle size distribution for MS2 bioaerosols are shown to be within the respirable range for alveolar region tract lung deposition and show a low geometric standard deviation (GSD) indicating a monodispersed aerosol was generated into the test chamber.

Data Analysis

Results from the control trials were graphed and plotted to show natural viability loss over time in the chamber. These control runs served as the basis to determine the time required for the Halo P to achieve a 4 log (99.99%) reduction in viable bioaerosol above the natural losses from the control runs. The control and trial runs are plotted showing log reduction in viable bioaerosol for each organism. All data is normalized with time zero (*t*=0 minutes) enumerated concentrations. Subsequent samples are normalized and plotted to show the loss of viability over time.

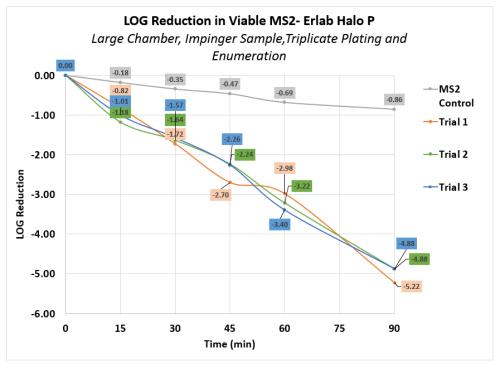


Figure 7: MS2 Halo P Log Reduction.

Results

When tested against the MS2 bacteriophage the device showed a steady net log reduction throughout the trials. At the 15-minute time point, there was an average 0.82 net LOG reduction. At the 90-minute time point, the Halo P device had average net log reduction 4.13 log. This is represented graphically in **Figure 7** which shows the log reduction for each trial.

Summary of Results

When tested against the MS2 bacteriophage, a surrogate traditionally used for influenza, the device showed a steady net log reduction in a relatively short amount of time. By the 90-minute time point results showed an average 4.99 LOG reduction and an average 4.13 net LOG reduction. This equates to over a 99.99% reduction in viable MS2. Net LOG reduction results can be found in **Figure 8.**

Overall the trials showed how efficient the Halo P device is against aerosolized MS2 in a relatively short time frame.

Average NET LOG Reduction of MS2 By Halo P Device

Bioaerosol Type	Species	Surrogate	Trial ID	15min	30min	45min	60min	90min
Virus	MS2 bacteriophage	Influenza	7	0.64	1.38	2.23	2.30	4.36
VIIds	(RNA E. coli phage)	Injiuenza	1	0.04	0.04 1.38 2.23		2.30	4.30
Virus	MS2 bacteriophage	Influenza	2	1.00	1.29	1.77	2.53	4.02
virus	(RNA E. coli phage)	Ingtuenza	2	1.00	1.29	1.77		4.02
Virus	MS2 bacteriophage	Influenza	3	0.82	1.23	1.79	2.71	4.02
Vitus	(RNA E. coli phage)	Ingtuenza	,	0.02	1.23	1.79	2.71	4.02
	Average			0.82 +/- 0.18	1.3 +/- 0.07	1.93 +/- 0.26	2.51 +/- 0.21	4.13 +/- 0.2

Figure 8: Net LOG Reduction summary table for all trials

References

T. Reponen, K. Willeke, V. Ulevicius et al. *Techniques of Dispersion of Microorganisms in Air*. Aerosol Science and TechnoLOGy. 27: 1997. pp. 405-421.

Ding and Wing. Effects of Sampling Time on the Total Recovery rate of AGI-30 Impingers for E. coli. Aerosol and Air Quality Research, Vol. 1, No. 1, 2001, pp. 31-36.

Flint et al. *Principles of ViroLOGy*. Principles of Virology (ASM). Chapter 2 ViroLOGical Methods. Vol. 2. 2008.

A. Mazzocco et al. *Enumeration of Bacteriophages Using the Small Drop Plaque Assay System.* Bacteriophages: Methods and Protocols, Vol. 1: Isolation, Characterization and Interactions. vol. 501. 2009. pp. 81-95.

P Hyman et al. *Practical Methods for Determining Phage Growth Parameters*. Bacteriophages: Methods and Protocols, Vol. 1: *Isolation, Characterization and Interactions*. vol. 501. 2009. pp. 175-201.

A. Furiga, G. Pierre, et al. *Effects of Ionic Strength on Bacteriophage MS2 Behavior and Their Implications of the Assessment of Virus Retention*. University of Toulouse. 2007.

Analytical Testing Facility

Aerosol Research and Engineering Labs, Inc. 15320 S. Cornice Street Olathe, KS 66062

Project

10903.10

Study Director

Dr. Michael Hornback Aerosol Research and Engineering Laboratories

GLP Statement

We, the undersigned, herby certify that the work described herein was conducted by Aerosol Research and Engineering Laboratories in compliance with FDA Good Laboratory Practices (GLP) as defined in 21 CFR, Part 58.

Study Director:	
Dr. Michael Hornback	10/29/2020 Date
Study Director	
ARE Labs, Inc.	
Principal Investigator:	10/29/2020
Sean McLeod	Date
Principal Investigator	
ARE Labs, Inc.	

Appendix A: Raw Plate Enumerations

Test Date	28-Oct-2	n												
Trial Number	Control	0												
Test Organism	MS2													
Nebulizer		24-Jet; app	rox. 20 m	nin nebuliza	ation									
Sampling Systems		for T=0,15												
Comments/Notes	NA		,,,-	-,										
	Plate	Plate						Enumerated	Impinger	Impinger			Average Chamber	Normalized
	Dilution	volume	Pla	te counts 1	00ul	Average	Average	Concentration	Sample Rate	Sample Time	Impinger vol	Total cfu Collected	Concentration	Concentration
Sample Time	Factor	ul	1	2	3	counts	cfu/ml	cfu/mL	(lpm)	(min)	PBS (ml)	(cfu) (per AGI)	(cfu/I)	(t=0, basis)
0	2x	100	TNTC	TNTC	TNTC				12.5	5	20.0			
	3x 4x	100 100	<u>8</u> 1	1	3 1	6	57 10	5.67E+04 1.00E+05				1.13E+06 2.00E+06	1.8E+04 3.2E+04	
	47	100				Average	10	7.83E+04				1.57E+06	2.51E+04	100.0%
15	2x	100	68	59	52	60	597	5.97E+04	12.5	5	20.0	1.19E+06	1.9E+04	76.2%
15	3x	100	4	4	5	4	43	4.33E+04	12.0	3	20.0	8.67E+05	1.4E+04	55.3%
	4x	100												
						Average		5.15E+04				1.03E+06	1.65E+04	65.7447%
30	2x	100	32	41	48	40	403	4.03E+04	12.5	5	20.0	8.07E+05	1.3E+04	51.5%
	3x	100	4	2	3	3	30	3.00E+04				6.00E+05	9.6E+03	38.3%
	4x			<u> </u>		4		2.525.04				7.025.05	1.125.04	44.002707
<u></u>		- 100		T ==		Average	0	3.52E+04	46.7		00.5	7.03E+05	1.13E+04	44.8936%
45	2x	100	32 2	27 3	21 3	27 3	267 27	2.67E+04	12.5	5	20.0	5.33E+05	8.5E+03	34.0% 34.0%
	3x 4x	100		1	3	3	21	2.67E+04				5.33E+05	8.5E+03	J4.U%
	7.4			1	1	Average		2.67E+04				5.33E+05	8.53E+03	34.0426%
60	2x	100	17	11	9	12	123	1.23E+04	12.5	5	20.0	2.47E+05	3.9E+03	15.7%
	3x	100	2	2	2	2	20	2.00E+04			20.0	4.00E+05	6.4E+03	25.5%
	4x													
						Average		1.62E+04				3.23E+05	5.17E+03	20.6383%
90	2x	100	15	16	4	12	117	1.17E+04	12.5	5	20.0	2.33E+05	3.7E+03	14.9%
	3x	100	2	1	0	1	10	1.00E+04				2.00E+05	3.2E+03	12.8%
	4x					4		1.000.04				2.170.05	3.47E+03	12.02000/
Test Date	27-Oct-2	0				Average		1.08E+04				2.17E+05	3.4/E+03	13.8298%
Trial Number	Trial 1	<u> </u>												
Test Organism	MS2													
Nebulizer		24-Jet; app	rox 20 m	nin nehuliz	ation									
Sampling Systems		for T=0,15			u									
Comments/Notes	NA		,,	-,										
	Plate							Enumerated	Impinger	Impinger			Average Chamber	Normalized
	Dilution	Plate Vol		Plate coun		Average		Concentration	Sample Rate		Impinger vol		Concentration	Concentration
Sample Time	Factor	ul	1	2	3	count	cfu/ml	cfu/mL	(Ipm)	(min)	PBS (ml)	(cfu) (per AGI)	(cfu/l)	(t=0, basis)
0	4x 4x	100 100	1	1	0	1	7	6.67E+04	12.5	2	20.0	1.33E+06	5.3E+04	
	5x	750		•	<u> </u>	'	-	0.072704	1			1.552+00	3.3L+04	
						Average		6.67E+04				1.33E+06	5.33E+04	100.0%
15	2x	100	20	22	28	23	233	2.33E+04	12.5	5	20.0	4.67E+05	7.5E+03	14.0%
	3x	100	4	2	2	3	27	2.67E+04				5.33E+05	8.5E+03	16.0%
	4x	750			<u> </u>	Augun		2.50E . 0.4				5.00E.05	9.00F . 02	15 00000/
20	2	100				Average		2.50E+04				5.00E+05	8.00E+03	15.0000%
30	3x 2x	100 100	3	3	1	2	23	2.33E+03		1	1	4.67E+04	7.5E+02	1.4%
	1x	100	39	41	39	40	397	3.97E+03]			7.93E+04	1.3E+03	2.4%
						Average	*	3.15E+03				6.30E+04	1.01E+03	1.8900%
45									12.5	10	20.0			
	1x	100	4	5	1	3	33	3.33E+02				6.67E+03	1.1E+02	0.2%
		750		1	1	1	1	<u> </u>	-			((TE: 02		
	0x	100				Angeres		2 225 . 02					1.07E : 02	0.20000/
en en			105	120	77	Average	174	3.33E+02	12.5	40	20.0	6.67E+03	1.07E+02	0.2000%
60	0x	750	185	129	77	Average 130	174	3.33E+02 1.74E+02	12.5	10	20.0	3.48E+03	1.07E+02 5.6E+01	0.2000% 0.1%
60			185	129	77		174		12.5	10	20.0			
60	0x 1x		185	129	77		174		12.5	10	20.0			
60	0x 1x 2x		185	129	77	130	174	1.74E+02	12.5	10	20.0	3.48E+03	5.6E+01	0.1%
	0x 1x 2x	750			77	130 Average		1.74E+02 1.74E+02				3.48E+03 3.48E+03	5.6E+01 5.56E+01	0.1%
	0x 1x 2x	750			77	130 Average	2	1.74E+02 1.74E+02				3.48E+03 3.48E+03	5.6E+01 5.56E+01	0.1%

T4 D-4	127 0	0						1						
Test Date	27-Oct-2 Trial 2	U						ł						
Trial Number														
Test Organism	MS2		•											
Nebulizer		24-Jet; app			ation									
Sampling Systems		for T=0,15	,30, 45,6	0, 90										
Comments/Notes	NA Plate							Emumo avata d	las ninesas	Imminus			Averers Chamber	Normalizad
	Dilution	Plate Vol		Plate count	te	Average	Average	Enumerated Concentration	Impinger Sample Rate	Impinger Sample Time	Impinger vol	Total cfu Collected	Average Chamber Concentration	Normalized Concentration
Sample Time	Factor	ul	1	2	3	count	cfu/ml	cfu/mL	(lpm)	(min)	PBS (ml)	(cfu) (per AGI)	(cfu/l)	(t=0, basis)
0	3x	100							12.5	2	20.0	1 7 7 7 7	, , , ,	1 ., ,
	4x	100	2	1	1	1	13	1.33E+05		•		2.67E+06	1.1E+05	
														100.00/
	_					Average		1.33E+05				2.67E+06	1.07E+05	100.0%
15	2x 3x	100 100	31 6	16 1	15 0	21	207	2.07E+04 2.33E+04	12.5	5	20.0	4.13E+05 4.67E+05	6.6E+03 7.5E+03	6.2% 7.0%
	4x	750	•	<u> </u>	U		23	2.33E+04				4.0/E+U0	7.5E+U3	7.0%
	174			1		Average		2.20E+04				4.40E+05	7.04E+03	6.6000%
30	3x	100	1	1	0	1	7	6.67E+03	12.5	5	20.0	1.33E+05	2.1E+03	2.0%
	2x	100	5	- 11	10	9	87	8.67E+03		•		1.73E+05	2.8E+03	2.6%
	1x	100												
						Average		7.67E+03				1.53E+05	2.45E+03	2.3000%
45	4	400							12.5	10	20.0			
	1x 1x	100 100	35	40	40	38	383	3.83E+03				7.67E+04	6.1E+02	0.6%
	IX	100	- 55	1 40	-10	Average	555	3.83E+03				7.67E+04	6.13E+02	0.5750%
60	0x	750	388	229	288	302	402	4.02E+02	12.5	10	20.0	8.04E+03	6.4E+01	0.1%
	1x											5.5.2100	5	570
	2x													
						Average		4.02E+02				8.04E+03	6.44E+01	0.0603%
90	0x	750	9	7	4	7	9	8.89E+00	12.5	10	20.0	1.78E+02	1.4E+00	0.0%
	1x 2x													
	ZX					Average		8.89E+00				1.78E+02	1.42E+00	0.0013%
						Average						1./0LT02	1.42ET00	0.0013 /0
Test Date	27 Oct 20	1												
Test Date	27-Oct-20)												
Trial Number	Trial 3)												
Trial Number Test Organism	Trial 3 MS2													
Trial Number	Trial 3 MS2 Collison 2	4-Jet; app			ation									
Trial Number Test Organism	Trial 3 MS2 Collison 2				ation									
Trial Number Test Organism Nebulizer	Trial 3 MS2 Collison 2 Impinger NA	4-Jet; app			ation									
Trial Number Test Organism Nebulizer Sampling Systems	Trial 3 MS2 Collison 2 Impinger NA Plate	.4-Jet; appi for T=0,15,	,30, 45,60	0, 90				Enumerated	Impinger	Impinger			Average Chamber	Normalized
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution	4-Jet; appi for T=0,15,	,30, 45,60), 90 Plate count	's	A verage	Average	Concentration	Sample Rate	Sample Time		Total cfu Collected	Concentration	Concentration
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor	4-Jet; appi for T=0,15, Plate Vol ul	,30, 45,60	0, 90		A verage count	Average cfu/ml		Sample Rate (Ipm)	Sample Time (min)	PBS (ml)	Total cfu Collected (cfu) (per AGI)		
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x	4-Jet; appl for T=0,15, Plate Vol ul 100	,30, 45,60 1	Plate count	's	count	cfu/ml	Concentration cfu/mL	Sample Rate	Sample Time		(cfu) (per AGI)	Concentration (cfu/l)	Concentration
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor	4-Jet; appi for T=0,15, Plate Vol ul	,30, 45,60), 90 Plate count	's			Concentration	Sample Rate (Ipm)	Sample Time (min)	PBS (ml)		Concentration	Concentration
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x	4-Jet; appl for T=0,15, Plate Vol ul 100	,30, 45,60 1	Plate count	's	count 1	cfu/ml	Concentration cfu/mL 1.00E+05	Sample Rate (Ipm)	Sample Time (min)	PBS (ml)	(cfu) (per AGI) 2.00E+06	Concentration (cfu/l) 8.0E+04	Concentration (t=0, basis)
Trial Number Test Organism Nebalizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x	### 14-Jet; apprint of T=0,15, ### Plate Vol ### 100	,30, 45,60 1 1	Plate count 2	3	count 1 Average	cfu/ml	Concentration cfu/mL 1.00E+05	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06	Concentration (cfu/l) 8.0E+04 8.00E+04	Concentration (t=0, basis)
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x	### 14-Jet; apprint of T=0,15, ### 100	,30, 45,60 1	Plate count	's	count 1	cfu/ml	Concentration cfu/mL 1.00E+05	Sample Rate (Ipm)	Sample Time (min)	PBS (ml)	(cfu) (per AGI) 2.00E+06	Concentration (cfu/l) 8.0E+04	Concentration (t=0, basis)
Trial Number Test Organism Nebalizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x	#4-Jet; appi for T=0,15, Plate Vol ul 100 100	,30, 45,60 1 1	Plate count 2	3	count 1 Average	cfu/ml	Concentration cfu/mL 1.00E+05	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06	Concentration (cfu/l) 8.0E+04 8.00E+04	Concentration (t=0, basis)
Trial Number Test Organism Nebalizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x	### 14-Jet; apprint of T=0,15, ### 100	,30, 45,60 1 1	Plate count 2	3	count 1 Average 25	cfu/ml	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05	Concentration (cfu/l) 8.0E+04 8.00E+04 7.9E+03	Concentration (t=0, basis) 100.0% 9.9%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x	#4-Jet; appi for T=0,15, Plate Vol ul 100 100	,30, 45,60 1 1	Plate count 2	3	count 1 Average	cfu/ml	Concentration cfu/mL 1.00E+05	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06	Concentration (cfu/l) 8.0E+04 8.00E+04	Concentration (t=0, basis)
Trial Number Test Organism Nebalizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	Plate Vol ul 100 100 100 750	1 1 22	Plate count 2 2 2 22	0	count 1 Average 25 Average	10 247	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 7.89E+03	Concentration (t=0, basis) 100.0% 9.9%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	#4-Jet; appring for T=0,15, Plate Vol	,30, 45,60 1 1	Plate count 2	3	count 1 Average 25	cfu/ml	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05	Concentration (cfu/l) 8.0E+04 8.00E+04 7.9E+03	Concentration (t=0, basis) 100.0% 9.9%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	Plate Vol ul 100 100 100 750	1 1 22	Plate count 2 2 2 22	0	count 1 Average 25 Average 7	10 247	Concentration cfwmL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 1.33E+05	Concentration (cfull) 8.0E+04 8.00E+04 7.9E+03 7.89E+03 2.1E+03	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7%
Trial Number Test Organism Nehulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	#4-Jet; appring for T=0,15, Plate Vol	1 1 22	Plate count 2 2 2 22	0	count 1 Average 25 Average	10 247	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04	Sample Rate (Ipm) 12.5 12.5	Sample Time (min) 2 5	20.0 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 7.89E+03	Concentration (t=0, basis) 100.0% 9.9%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	### A-Jet; appring for T=0,15, ### Plate Vol ### 100	30, 45,60), 90 Plate count 2 2 22	30	count 1 Average 25 Average 7 Average	247 67	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03	Sample Rate (Ipm) 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 1.33E+05 1.33E+05	Concentration (cfu/l) 8.0E+04 8.00E+04 7.9E+03 2.1E+03 2.13E+03	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x	#4-Jet; applied for T=0,15, Plate Vol ul 100 100 100 750 100 750 100 750 100 750 100 100 750	1 1 22	Plate count 2 2 2 22	0	count 1 Average 25 Average 7	10 247	Concentration cfwmL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03	Sample Rate (Ipm) 12.5 12.5	Sample Time (min) 2 5	20.0 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 1.33E+05	Concentration (cfull) 8.0E+04 8.00E+04 7.9E+03 7.89E+03 2.1E+03	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7%
Trial Number Test Organism Nehulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x	### A-Jet; appring for T=0,15, ### Plate Vol ### 100	30, 45,60), 90 Plate count 2 2 22	30	count 1 Average 25 Average 7 Average 27	247 67	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03 2.73E+03	Sample Rate (Ipm) 12.5 12.5	Sample Time (min) 2 5	20.0 20.0 20.0	2.00E+06 2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes 15 30	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	14-Jet; appir for T=0,15, Plate Vol ul 100 100 100 750	30, 45,60 1 1 1 22 9	9 9 30 30	30 30 2	count 1 Average 25 Average 7 Average 27 Average	247 67 273	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03 2.73E+03	Sample Rate (Ipm) 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0 20.0 20.0	2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5%
Trial Number Test Organism Nehulizer Sampling Systems Comments/Notes Sample Time 0	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	#4-Jet; applied for T=0,15, Plate Vol ul 100 100 100 750 100 750 100 750 100 750 100 100 750	30, 45,60), 90 Plate count 2 2 22	30	count 1 Average 25 Average 7 Average 27	247 67	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03 2.73E+03	Sample Rate (Ipm) 12.5 12.5	Sample Time (min) 2 5	20.0 20.0 20.0	2.00E+06 2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes 15 30	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	14-Jet; appir for T=0,15, Plate Vol ul 100 100 100 750	30, 45,60 1 1 1 22 9	9 9 30 30	30 30 2	count 1 Average 25 Average 7 Average 27 Average	247 67 273	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 2.47E+04 6.67E+03 2.73E+03	Sample Rate (Ipm) 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0 20.0 20.0	2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes 15 30	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	14-Jet; appir for T=0,15, Plate Vol ul 100 100 100 750	30, 45,60 1 1 1 22 9	9 9 30 30	30 30 2	1	247 67 273	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 6.67E+03 2.73E+03 2.73E+03 2.00E+02	Sample Rate (Ipm) 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 1.33E+05 1.33E+05 5.47E+04 4.00E+03	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02 3.2E+01	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0 15 30 45	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	14-Jet; apprifor T=0,15, Plate Vol ul 100 100 100 750 100 750	9 22 28 153), 90 Plate count 2 2 22 9 152	30 2 2 145	count 1 Average 25 Average 7 Average 150 Average	10 247 67 273 200	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 6.67E+03 2.73E+03 2.73E+03 2.00E+02	Sample Rate ((pm) 12.5 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04 4.00E+03	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02 3.2E+01	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5% 0.0%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes 15 30	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x 0x	14-Jet; appir for T=0,15, Plate Vol ul 100 100 100 750	30, 45,60 1 1 1 22 9	9 9 30 30	30 30 2	1	247 67 273	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 6.67E+03 2.73E+03 2.73E+03 2.00E+02	Sample Rate (Ipm) 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.0 20.0 20.0	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 1.33E+05 1.33E+05 5.47E+04 4.00E+03	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02 3.2E+01	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5% 0.0%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0 15 30 45	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x	14-Jet; apprifor T=0,15, Plate Vol ul 100 100 100 750 100 750	9 22 28 153), 90 Plate count 2 2 22 9 152	30 2 2 145	count 1 Average 25 Average 7 Average 150 Average	10 247 67 273 200	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 6.67E+03 2.73E+03 2.73E+03 2.00E+02	Sample Rate ((pm) 12.5 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04 4.00E+03	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02 3.2E+01	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5% 0.0%
Trial Number Test Organism Nebulizer Sampling Systems Comments/Notes Sample Time 0 15 30 45	Trial 3 MS2 Collison 2 Impinger NA Plate Dilution Factor 3x 4x 2x 3x 4x 1x 0x 1x 0x	14-Jet; apprifor T=0,15, Plate Vol ul 100 100 100 750 100 750	9 22 28 153), 90 Plate count 2 2 22 9 152	30 2 2 145	count 1 Average 25 Average 7 Average 150 Average	10 247 67 273 200	Concentration cfu/mL 1.00E+05 1.00E+05 2.47E+04 6.67E+03 2.73E+03 2.73E+03 2.00E+02	Sample Rate ((pm) 12.5 12.5 12.5 12.5	Sample Time (min) 2	PBS (ml) 20.0 20.	(cfu) (per AGI) 2.00E+06 2.00E+06 4.93E+05 4.93E+05 1.33E+05 5.47E+04 4.00E+03	Concentration (cfu/l) 8.0E+04 8.0E+04 7.9E+03 2.1E+03 2.13E+03 4.4E+02 4.37E+02 3.2E+01	Concentration (t=0, basis) 100.0% 9.9% 9.8667% 2.7% 2.6667% 0.5% 0.0%

Appendix B: Calculations

To evaluate the viable aerosol delivery efficiency and define operation parameters of the system, calculations based on (theoretical) 100% efficacy of aerosol dissemination were derived using the following steps:

- Plating and enumeration of the biological to derive the concentration of the stock suspension (C_s) in pfu/mL or cfu/mL, or cfu/g for dry powder.
- Collison 24 jet nebulizer use rate (R_{neb}) (volume of liquid generated by the nebulizer/time) at 28 psi air supply pressure = 1.0 ml/min.
- Collison 24 jet Generation time (t) = 20 or 30 minutes, test dependent.
- Chamber volume $(V_c) = 15,993$ Liters

Assuming 100% efficiency, the quantity of aerosolized viable particles (V_P) per liter of air in the chamber for a given nebulizer stock concentration (C_s) is calculated as:

Nebulizer:
$$V_P = \frac{C_s \cdot R_{neb}}{V_c} t$$

Plating and enumeration of the biological to derive the concentration of the dry powder (C_p) in cfu/g.

- Eductor use rate (M_p) (Mass of powder generated by the eductor in grams)
- Chamber volume $(V_c) = 15,993$ Liters

Assuming 100% efficiency, the quantity of aerosolized viable particles (V_P) per liter of air in the chamber for a given dry powder stock concentration (C_p) is calculated as:

Eductor:
$$V_P = \frac{C_p \cdot M_p}{V_c}$$

AGI – 30 impinger or 47mm filter collection calculation:

- Viable aerosol concentration collection (C_a) = cfu or pfu/L of chamber air.
- Viable Impinger concentration collection (C_{Imp}) = cfu or pfu/mL from enumeration of impinger sample or filter sample.
- Impinger sample collection volume (I_{vol}) = 20 mL collection fluid/impinger, or extraction fluid for filter.
- AGI–30 impinger or filter sample flow rate $(Q_{imp}) = 12.5 \text{ L/min}$.
- AGI-30 impinger or filter sample time (t) = 5 or 10 minutes, test dependent.

For viable impinger or filter aerosol concentration collection (C_a) = cfu or pfu/L of chamber air:

$$C_a = \frac{\mathbf{C}_{\mathrm{Imp}} \cdot \mathbf{I}_{\mathrm{vol}}}{\mathbf{Q}_{\mathrm{imp}}} \, \mathbf{t}$$

The aerosol system viable delivery efficiency (expressed as %) is:

Efficiency =
$$\frac{C_a}{V_p} \cdot 100$$